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Signal for space-time noncommutativity: the
Z → γγ decay in the renormalizable gauge

xv



sector of the θ-expanded NCSM 379

D. V. Uvarov

Supertwistor formulation for the first-order
superstring action 391
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Generalized Gauge Field Approach
To Lightlike Branes

E.I. Guendelman and A. Kaganovich∗
Department of Physics, Ben-Gurion University of the Negev

P.O.Box 653, IL-84105 Beer-Sheva, Israel

E. Nissimov and S. Pacheva†
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy
of Sciences, Boul. Tsarigradsko Chausee 72, BG-1784 Sofia, Bulgaria

Abstract

We propose a general action describing the dynamics of lightlike (LL) p-branes
in any odd (p + 1) world-volume dimensions. Next, we consider self-consistent
coupling of LL-membranes (p=2) to D=4 Einstein-Maxwell system plus a D=4
three-index antisymmetric tensor gauge field. The LL-brane serves as a material
and charge source for gravity and electromagnetism and, furthermore, it produces
a dynamical space-varying cosmological constant. We present static spherically-
symmetric solutions where the space-time consists of two regions with different
black-hole-type geometries and different values for dynamically generated cosmo-
logical constant, separated by the LL-brane which “straddles” their common event
horizon.

PACS numbers: 11.25.-w, 04.70.-s, 04.50.+h

1. Introduction

In the context of non-perturbative string theory there arise several types
of higher-dimensional membranes (p-branes, Dp-branes) which play a cru-
cial role in the description of string dualities, microscopic physics of black
holes, gauge theory/gravity correspondence [1], cosmological brane-world
scenarios [2], model building in high-energy particle phenomenology [3], etc.

There is a distinct class of branes – lightlike branes, which are of partic-
ular interest in general relativity. They describe impulsive lightlike signals
arising in various cataclysmic astrophysical events [4]. Lightlike membranes
are basic ingredients in the so called “membrane paradigm” theory [5] of
black hole physics. Furthermore, in the context of the so called thin-wall
description of domain walls coupled to gravity [6, 7] they are able to provide
quite effective treatment of many cosmological and astrophysical effects.

∗ e-mail address: guendel@bgumail.bgu.ac.il , alexk@bgumail.bgu.ac.il
† e-mail address: nissimov@inrne.bas.bg , svetlana@inrne.bas.bg
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Lightlike Branes 2

In refs.[6, 7] lightlike branes in the context of gravity and cosmology have
been extensively studied from a phenomenological point of view, i.e., by
introducing them without specifying the Lagrangian dynamics from which
they may originate. On the other hand, in a series of recent papers [9, 10] we
have developed a new field-theoretic approach for a systematic description
of the dynamics of lightlike branes starting from concise Weyl-conformally
invariant actions. The latter are related to, but bear significant qualitative
differences from, the standard Nambu-Goto-type p-brane actions1.

The main aim of the present papers is to show that there exists a general
class of (not necessarily Weyl-conformally invariant) consistent Lagrangian
theories of lightlike branes, which is universal in the sense that all these
theories yield physically equivalent solutions of the equations of motion,
especially when coupled to bulk gravity-matter systems (see Section 4 be-
low).

Our approach is based on two basic ingredients:
• Employing alternative non-Riemannian integration measure (volume-

form) [11, 12] in the actions of generally-covariant (reparametrization-
invariant) field theories instead of (or, more generally, on equal footing
with) the standard Riemannian volume form.

• Employing auxiliary world-volume gauge field with a Lagrangian being
an arbitrary function of the standard Maxwell Lagrangian term.

Before proceeding to the main exposition let us briefly recall the stan-
dard Polyakov-type formulation of the ordinary (bosonic) Nambu-Goto p-
brane action:

S = −T

2

∫
dp+1σ

√−γ
[
γab∂aX

µ∂bX
νGµν(X)− Λ(p− 1)

]
. (1)

Here γab is the ordinary Riemannian metric on the p+1-dimensional brane
world-volume with γ ≡ det ||γab||. The world-volume indices a, b = 0, 1, . . . , p;
Gµν denotes the Riemannian metric in the embedding space-time with
space-time indices µ, ν = 0, 1, . . . , D − 1. T is the given ad hoc constant
brane tension; the constant Λ can be absorbed by rescaling T . The equa-
tions of motion w.r.t. γab and Xµ read:

Tab ≡
(

∂aX
µ∂bX

ν − 1
2
γabγ

cd∂cX
µ∂dX

ν

)
Gµν + γab

Λ
2

(p− 1) = 0 , (2)

∂a

(√−γγab∂bX
µ
)

+
√−γγab∂aX

ν∂bX
λΓµ

νλ = 0 , (3)

where:
Γµ

νλ =
1
2
Gµκ (∂νGκλ + ∂λGκν − ∂κGνλ) (4)

1In ref.[8] brane actions in terms of their pertinent extrinsic geometry have been
proposed which generically describe non-lightlike branes, whereas the lightlike branes are
treated as a limiting case.



Lightlike Branes 3

is the Christoffel connection for the external metric. In particular, when
p 6= 1 Eqs.(2) imply:

Λγab = ∂aX
µ∂bX

νGµν . (5)

Let us note the following properties of standard Nambu-Goto p-branes
manifesting their crucial differences w.r.t. the lightlike branes discussed
below. Eq.(5) tells us that: (i) the induced metric on the Nambu-Goto
p-brane world-volume is non-singular; (ii) standard Nambu-Goto p-branes
describe intrinsically massive modes.

2. Lightlike Branes. Action and Equations of Motion

Let us consider the following new kind of p-brane action involving modified
world-volume integration measure density Φ(ϕ) and an auxiliary (Abelian)
world-volume gauge field Aa:

S = −
∫

dp+1σ Φ(ϕ)
[1
2
γab∂aX

µ∂bX
νGµν − L

(
F 2

)]
(6)

Φ(ϕ) ≡ 1
(p + 1)!

εi1...ip+1ε
a1...ap+1∂a1ϕ

i1 . . . ∂ap+1ϕ
ip+1 (7)

F 2 ≡ Fab(A)Fcd(A)γacγbd (8)

Here γab denotes the intrinsic Riemannian metric on the brane world-
volume, γ = det ‖γab‖, Fab = ∂aAb − ∂bAa and a, b = 0, 1, . . . , p; i, j =
1, . . . , p + 1. L

(
F 2

)
is an arbitrary function of the Maxwell Lagrangian

term. As we will see below, consistency of dynamics requires F 2L′
(
F 2

)
> 0

(the prime on L indicating derivative w.r.t. its argument).
Rewriting the action (6) in the following equivalent form:

S = −
∫

dp+1σ χ
√−γ

[1
2
γab∂aX

µ∂bX
νGµν − L

(
F 2

)]
, χ ≡ Φ(ϕ)√−γ

(9)

we see that the composite field χ plays the role of a dynamical (variable)
brane tension. Let us note the following differences of (6) (or (9)) w.r.t.
the standard Nambu-Goto p-branes (in the Polyakov-like formulation) (1):

• New non-Riemannian integration measure density Φ(ϕ) instead of the
usual

√−γ, and no “cosmological-constant” term ((p− 1)
√−γ).

• Variable brane tension χ ≡ Φ(ϕ)√−γ
.

• Auxiliary world-sheet gauge field Aa entering via arbitrary non-linear
Lagrangian.

• Possibility for natural couplings of auxiliary Aa to external world-
volume (“color” charge) currents Ja.

• The action (6) describes intrinsically light-like p-branes for any even
p, i.e., any odd-dimensional world-volume, see below.
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• For the special choice L
(
F 2

)
=
√

F 2 the brane action (6) becomes
Weyl-conformally invariant for any p [9, 10]. Also, let us note that
there are no quantum conformal anomalies in odd (p+1) dimensions!

Employing the short-hand notations (8) and:

(∂aX∂bX) ≡ ∂aX
µ∂bX

νGµν (10)

for the induced metric, the equations of motion w.r.t. measure-building
auxiliary scalars ϕi and γab read, respectively:

1
2
γcd (∂cX∂dX)− L

(
F 2

)
= M

(
= integration const

)
, (11)

1
2

(∂aX∂bX) + 2L′
(
F 2

)
Facγ

cdFdb = 0 , (12)

where the latter can be viewed as p-brane analogues of the string Virasoro
constraints.

Eqs.(11)–(12) have the following profound consequences. First, from
(12) we obtain:

det ‖ (∂aX∂bX) ‖ =
(−4L′(F 2)

)p+1 (−det ‖γab‖) (det ‖iFab‖)2 (13)

For (p+1) =even world-volume dimensions the r.h.s. of (13) is strictly pos-
itive (because of the Lorentzian signature of γab), whereas the determinant
of the induced metric in the l.h.s of (13) should be negative conforming with
the Lorentzian signatures of both world-volume and embedding space-time
metrics. Therefore, we conclude that the brane action (6) does not describe
a consistent dynamics for even world-volume dimensions.

Next, taking the trace in (12) and comparing with (11) implies the
following crucial relation for the Lagrangian function L

(
F 2

)
:

L
(
F 2

)− 2F 2L′
(
F 2

)
+ M = 0 . (14)

Eq.(14) can be viewed in two ways:
(a) For M = 0 (14) is identically satisfied if we choose L

(
F 2

)
=
√

F 2.
This is precisely the case of Weyl-conformally invariant brane action (6)
which was introduced and extensively studied in Refs.[9, 10].

(b) For arbitrary (non-zero) constant M and arbitrary function L
(
F 2

)
Eq. (14) determines F 2 as certain function of M , i.e.

F 2 = F 2(M) = const (15)

This is the generic case which will be discussed in what follows.
The third and most important implication of Eqs.(12) is as follows.

Since Fab is anti-symmetric (p+1)×(p+1) matrix, then Fab is not invertible
in any odd (p + 1) – it has at least one zero-eigenvalue vector-field V a:
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FabV
b = 0. Therefore, for any odd (p+1) the induced metric (∂aX∂bX) on

the world-volume of the p-brane model (6) is singular (as opposed to the
ordinary Nambu-Goto brane, see (5)):

(∂aX∂bX) V b = 0 , i.e. (∂V X∂V X) = 0 , (∂⊥X∂V X) = 0 (16)

where ∂V ≡ V a∂a and ∂⊥ are derivatives along the tangent vectors in the
complement of V a. In particular, for (p + 1)=3 we have V a ' 1

2
εabc√−γ

Fbc.
Thus, we arrive at the following important conclusion: every point on

the world-surface of the p-brane (6) (for odd (p+1)) moves with the speed
of light in a time-evolution along the zero-eigenvalue vector-field V a of Fab.
Therefore, we will name (6) (for odd (p + 1)) by the acronym LL-brane
(Lightlike-brane) model.

Finally, we get the equations of motion w.r.t. auxiliary gauge field Aa:

∂b

(
Fcdγ

acγbd√−γ χ
)

= 0 , (17)

where relation (15) has been taken into account, and the equations of mo-
tion w.r.t. Xµ :

∂a

(
χ
√−γγab∂bX

µ
)

+ χ
√−γγab∂aX

ν∂bX
λΓµ

νλ = 0 . (18)

Remark. In what follows we will use a natural ansatz for the world-
volume electric field F0i = 0 implying that (V a) = (1, 0), i.e., ∂V = ∂0 ≡ ∂τ .

3. Special Case p = 2. Coupling to Space-Time Maxwell and
Rank-3 Antisymmetric Tensor Gauge Fields

Henceforth we will explicitly consider the special case p = 2 of (6), i.e., the
lightlike membrane model:

S = −
∫

d3σ Φ(ϕ)
[1
2
γab∂aX

µ∂bX
νGµν(X)− L

(
F 2

)]
(19)

Φ(ϕ) ≡ 1
3!

εijkε
abc∂aϕ

i∂bϕ
j∂cϕ

k , a, b, c = 0, 1, 2 , i, j, k = 1, 2, 3 . (20)

Invariance under world-volume reparametrizations allows to introduce
the standard (synchronous) gauge-fixing conditions:

γ0i = 0 (i = 1, 2) , γ00 = −1 . (21)

The ansatz F0i = 0, together with the Biancchi identity εabc∂aFbc = 0 and
(21) when inserted in (15), implies:

F 2 = 2B2 = const ; B =
1
2

εij

√
γ(2)

Fij , γ(2) ≡ det ‖γij‖ ; (22)

∂0

(
εijFij

)
= 0 −→ ∂0γ

(2) = 0 . (23)
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Then the gauge-fixed equations motion for Aa (17) drastically simplify:

∂iχ = 0 , (24)

where χ ≡ Φ(φ)√−γ
(the dynamical brane tension as in (9)).

Employing (21), the remaining gauge-fixed equations of motion w.r.t.
γab and Xµ read (recall (∂aX∂bX) ≡ ∂aX

µ∂bX
νGµν):

(∂0X∂0X) = 0 , (∂0X∂iX) = 0 , (25)

(∂iX∂jX)− 2c1(M)γij = 0 , c1(M) ≡ F 2L′(F 2)
∣∣∣∣
F 2=F 2(M)

= const , (26)

¤(3)Xµ + χ

√
γ(2)

(
−∂0X

ν∂0X
λ + γkl∂kX

ν∂lX
λ
)

Γµ
νλ = 0 , (27)

¤(3) ≡ −∂0

(
χ

√
γ(2)∂0

)
+ ∂i

(
χ

√
γ(2)γij∂j

)
(28)

Remark. Note that (26) coincides with the space-like part of the
Nambu-Goto brane constraint Eqs.(5), whereas (25) drastically differ from
their Nambu-Goto counterparts.

Remark. Consistency according to (26) requires that the constant:

c1(M) ≡ F 2L′(F 2)
∣∣∣∣
F 2=F 2(M)

> 0 , (29)

therefore, an admissible choice for L
(
F 2

)
is:

L
(
F 2

)
= +

1
4
F 2 , i.e. F 2 = 4M , c1(M) = M (30)

by virtue of Eq.(14). The term (30) is a Maxwell Lagrangian with a wrong
sign, however, this is not a contradiction since in the context of LL-brane
(6) the world-volume gauge field Aa is an auxiliary non-dynamical field.

Remark. In the special case of Weyl-conformally invariant lightlike
branes [9, 10], i.e., for L

(
F 2

)
=
√

F 2 and M = 0 Eqs.(23) and (26) change

accordingly to ∂0

(
B

√
γ(2)

)
= 0 and (∂iX∂jX)−√2Bγij = 0 (the mag-

netic field B is not necessarily constant in this case).
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We can extend straightforwardly the LL-brane model (19) via couplings
to external space-time electromagnetic field Aµ and, furthermore, to exter-
nal space-time rank 3 gauge potential Aµνλ (Kalb-Ramond-type coupling):

S = −
∫

d3σ Φ(ϕ)
[1
2
γab∂aX

µ∂bX
νGµν − L

(
F 2

)]

− q

∫
d3σ εabcAµ∂aX

µFbc − β

3!

∫
d3σ εabc∂aX

µ∂bX
ν∂cX

λAµνλ (31)

The second Chern-Simmons-like term in (31) is a special case of a class of
Chern-Simmons-like couplings of extended objects to external electromag-
netic fields proposed in ref.[13].

Let us recall the physical significance of Aµνλ [14]. In D = 4 when
adding kinetic term for Aµνλ coupled to gravity (see Eq.(37) below), its
field-strength:

Fκλµν = 4∂[κAλµν] = F
√
−Gεκλµν (32)

with a single independent component F produces dynamical (positive) cos-
mological constant:

K =
4
3
πGNF2

(
GN −Newton constant

)
. (33)

The constraints (25)–(26) (the gauged-fixed equations of motion w.r.t.
γab) remain unaltered for the action (31). Using the same gauge choice
(γ0i = 0, γ00 = −1) and ansatz for the world-volume gauge field-strength
(F0i(A) = 0), the equations of motion w.r.t. Aa now acquire the form
(recall χ ≡ Φ(ϕ)√−γ

– the brane tension, Fµν(A) = ∂µAν − ∂νAµ):

∂iX
µ∂jX

νFµν(A) = 0 , ∂iχ +
√

2q

c2(M)
∂0X

µ∂iX
νFµν(A) = 0 , (34)

where:

c2(M) ≡ 2
√

F 2L′(F 2)
∣∣∣∣
F 2=F 2(M)

= const . (35)

In particular c2(M) =
√

M for the wrong-sign Maxwell choice (30).
Eqs.(34) tell us that consistency of charged LL-brane dynamics implies

that the external space-time Maxwell field must have zero magnetic com-
ponent normal to the brane, as well as that the projection of the external
electric field along the brane must be proportional to the gradient of the
brane tension. Finally, the Xµ equations of motion for (31) read:

¤(3)Xµ + χ

√
γ(2)

(
−∂0X

ν∂0X
λ + γkl∂kX

ν∂lX
λ
)

Γµ
νλ

−2qB

√
γ(2)∂0X

νFλν Gλµ − β

3!
εabc∂aX

κ∂bX
λ∂cX

νGµρFρκλν = 0 , (36)
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where Fρκλν is given as in (32) and B =
√

1
2F 2 = const (B =

√
2M for the

wrong-sign Maxwell choice, recall (22), (30)).

4. Bulk Einstein-Maxwell System Coupled to Lightlike Brane

Now let us consider the coupled Einstein-Maxwell-LL-brane system adding
also a coupling to a rank 3 gauge potential:

S =
∫

d4x
√
−G

[
R(G)

16πGN
− 1

4
FµνFµν − 1

4!2
FκλµνFκλµν

]
+ SLL−brane .(37)

Here Fµν = ∂µAν − ∂νAµ, Fκλµν = 4∂[κAλµν] = F√−Gεκλµν as above,
and the LL-brane action is the same as in (31).

The equations of motion for the LL-brane subsystem are the same as
(25)–(26), (34)–(36), whereas the Einstein, Maxwell and 3-index gauge field
equations read:

Rµν − 1
2
GµνR = 8πGN

(
T (EM)

µν + T (rank−3)
µν + T (brane)

µν

)
, (38)

∂ν

(√
−GGµκGνλFκλ

)
+ q

∫
d3σ δ(4)

(
x−X(σ)

)
εabcFbc∂aX

µ = 0 , (39)

ελµνκ∂κF + β

∫
d3σ δ(4)(x−X(σ))εabc∂aX

λ∂aX
µ∂aX

ν = 0 . (40)

where in the last equation we have used relation (32). The energy-momentum
tensors read:

T (EM)
µν = FµκFνλGκλ −Gµν

1
4
FρκFσλGρσGκλ , (41)

T (rank−3)
µν =

1
3!

[
FµκλρFν

κλρ − 1
8
GµνFκλρσFκλρσ

]
= −1

2
F2Gµν , (42)

T (brane)
µν = −GµκGνλ

∫
d3σ

δ(4)
(
x−X(σ)

)
√−G

χ
√−γγab∂aX

κ∂bX
λ . (43)

(recall χ ≡ Φ(ϕ)√−γ
– the variable brane tension (9)).

We will be looking for static spherically symmetric solutions of the
equations of motion (38)–(40) of the bulk gravity-matter system coupled
to a charged LL-brane (37) (we will assume spherical topology for the LL-
brane surface). Notice that:

(a) The LL-brane serves as material and charge source for the bulk
gravity and electromagnetism;

(b) The resulting space-time will consist of two regions (one “interior”
and one “exterior”) separated by the hypersurface of the LL-brane world-
volume which will impose non-trivial matching conditions across itself for
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the parameters of the (static) spherically symmetric geometries in both
space-time regions.

(c) Consistency of dynamics of the LL-brane – it should yield the same
solutions for the LL-brane equations of motion both from the point of view
of the interior as well as the exterior bulk gravity-matter.

The general form of spherically-symmetric gravitational background in
D = 4 reads:

(ds)2 = −A(r, t)(dt)2 + B(r, t)(dr)2 + C(r, t)[(dθ)2 + sin2(θ) (dφ)2] (44)

Concerning point (c) above consider the following ansatz:

X0 ≡ t = τ , X1 ≡ r = r(τ, σ1, σ2) , X2 ≡ θ = σ1 , X3 ≡ φ = σ2(45)
γij = a(τ, σ1, σ2)

(
(dσ1)2 + sin2(σ1)(dσ2)2

)
(46)

and substitute it into the LL-brane equations of motion. We get:
• Equations for r(τ, σ1, σ2) from the lightlike constraints (25):

∂r

∂τ
= ±

√
A

B
,

∂r

∂σi
= 0 (47)

• A strong restriction on the gravitational background itself due to the
Virasoro-like constraints (26). Namely, because of (23) the conformal
factor a in (46) must be τ -independent. From this and (26) we deduce:

∂0 (∂iX∂jX) = 0 −→ dC

dτ
≡

(
∂C

∂t
±

√
A

B

∂C

∂r

)∣∣∣∣
t=τ, r=r(τ)

= 0 (48)

Eq.(48) tells us that the (squared) sphere radius R2 ≡ C(r, t) must
remain constant along the LL-brane trajectory. For static backgrounds
R2 ≡ C(r) Eqs.(48),(47) imply:

r(τ) = r0 (= const) , A(r0) = 0 (49)

Eq.(49) is of primary importance as it shows that the LL-brane auto-
matically positions itself on the event horizon.

• The Virasoro-like constraints (26), taking into account (49) and (46),
imply:

a =
C(r0)

2c1(M)
= const (50)

• LL-brane equations of motion (36) for X0 ≡ t and X1 ≡ r turn out
to be proportional to each other and reduce to an equation for the
variable brane tension χ (9):

a∂τχ + χa
∂
∂t

√
AB ± ∂rA√

AB
± χ

∂rC√
AB

∓
√

2q

c2(M)
C√
AB

F0r ± βFC
√

AB = 0 (51)
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where F is the independent component of the rank 4 field-strength
(32) and the constant c2(M) is the same as in (35) (here again one
sets at the end t = τ, r = r(τ)).

Thus, following the same procedure as in the case of Weyl-conformally
invariant lightlike branes [10] we arrive at the following static spherically
symmetric solutions for the system (37). The bulk space-time consists of
two regions separated by the LL-brane sitting on (“straddling”) a common
horizon of the former:

(ds)2 = −A(∓)(r)(dt)2 +
1

A(∓)(r)
(dr)2 + r2[(dθ)2 + sin2(θ) (dφ)2] , (52)

where the subscript (−) refers to the region inside, whereas the subscript
(+) refers to the region outside the horizon at r = r0 ≡ rhorizon (49). The
interior region is a Schwarzschild-de-Sitter space-time:

A(r) ≡ A(−)(r) = 1−K(−)r
2 − 2GNm(−)

r
, for r < r0 , (53)

whereas the exterior region is Reissner-Nordström-de-Sitter space-time:

A(r) ≡ A(+)(r) = 1−K(+)r
2 − 2GNm(+)

r
+

GNQ2

r2
, for r > r0 , (54)

with Reissner-Norström (squared) charge given by:

Q2 = 8πq̄2r4
0 , q̄ ≡ q

c2(M)
. (55)

The rank 3 tensor gauge potential together with its Kalb-Rammond-type
coupling to the LL-brane produce via Eq.(40) a dynamical space-varying
cosmological constant which is different inside and outside the horizon:

K(±) =
4
3
πGNF2

(±) for r ≥ r0 ( r ≤ r0 ) , F(+) = F(−) − β . (56)

The Einstein Eqs.(38) and the Xµ-brane Eqs.(36) yield two matching condi-
tions for the normal derivatives w.r.t. the horizon of the space-time metric
components:

(
∂rA(+) − ∂rA(−)

)|r=r0
= −16πGNχ ,

(
∂rA(+) − ∂rA(−)

)|r=r0
= −r0(2q̄2 + β2)∂rA(−) |r=r0

2χ + βr0F(−)
. (57)

with q̄ as in (55). The matching conditions (57) plus relation (50) allow all
physical parameters of the solution, i.e., two spherically symmetric black
hole space-time regions “soldered” along a common horizon materialized
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by the LL-brane, as well as the value of the integration constant M , to be
expressed in terms of 3 free parameters (q, β,F) where (cf. Eq.(31)):

(a) q is the LL-brane surface electric charge density;
(b) β is the LL-brane (Kalb-Rammond-type) charge w.r.t. rank 3 space-

time gauge potential Aλµν ;
(c) F(−) is the vacuum expectation value of the 4-index field-strength

Fκλµν in the interior region.

For the common horizon radius r0, the conformal factor a of the internal
brane metric (46), the Schwarzschild and Reissner-Nordström masses m(∓)

we obtain (q̄ is the same as in (55)):

r2
0 =

[
4πGN

(
F2

(−) − βF(−) + q̄2 +
β2

2

)]−1
, (58)

a =
(
q̄2 +

β2

2

)[
2πGN

(
−βF(−) + q̄2 +

β2

2

)2]−1
, (59)

m(−) =
r0

(
2
3F2

(−) − βF(−) + q̄2 + β2

2

)

2GN

(
F2

(−) − βF(−) + q̄2 + β2

2

) , (60)

m(+) = m(−) +
r0

(
2q̄2 + 2

3βF(−) − 1
3β2

)

2GN

(
F2

(−) − βF(−) + q̄2 + β2

2

) (61)

For the brane tension we get accordingly:

χ =
r0

2

(
q̄2 +

β2

2
− 2βF(−)

)
(62)

Inserting (58)–(59) into relation (50) fixes the value ot the integration con-
stant M . In particular, for the wrong-sign Maxwell choice (30) andF(−) = 0
we get M = 1/4.

Using expressions (58)–(61) we find for the slopes of the metric coeffi-
cients A(±)(r) at r = r0:

∂rA(+)|r=r0
= −∂rA(−)|r=r0

, ∂rA(−)|r=r0
= 8πGNχ (63)

with χ as in (62). The typical form of A(r) is depicted in Fig.1 below.
As shown in refs.[10], this form of A(r) creates a potential “well” in the
vicinity of the LL-brane lying on the common horizon which acts as a trap
for test particles falling toward the horizon.
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Figure 1: Shape of A(r) as a function of the dimensionless ratio x ≡ r/r0
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